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Comparing Learning Algorithms ModelDiff in three steps

ML pipelines entail many design choices Case study: Compare models trained on Waterbirds data Step 3: Infer + test distinguishing transformations
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— ModelDiff: Fine-grained comparisons of learning algorithms
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— Use-case: Pinpoint train-time design choices shape model biases

— Main idea: Compare impact of training examples on predictions
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- Approach: Use PCA to cluster residual datamodels
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