ModelDiff: A Framework for Comparing Learning Algorithms

Harshay Shah*, Sung Min Park*, Andrew Ilyas*, Aleksander Mądry

Comparing Learning Algorithms

Problem: Identify differences between algorithm 1 and algorithm 2 in a fine-grained way

How? Find input-space distinguishing transformation Fwith disparate impact on algorithm 1 and algorithm 2

ModelDiff in three steps

Approach: Use PCA to cluster residual datamodels

Step 3: Infer + test distinguishing transformations

Inspect extracted subpopulations to **infer** distinguishing transformation and **test** its effect on both alg 1 and alg 2

No ImageNet pre-training \rightarrow "yellow color" bias

ImageNet pre-training \rightarrow "human face" bias

$Pr(\hat{y} = \text{landbird} | \text{do(yellow color)})$

Takeaways

 \rightarrow ModelDiff: Fine-grained comparisons of learning algorithms \rightarrow Use-case: Pinpoint train-time design choices shape model biases \rightarrow Main idea: Compare impact of training examples on predictions

Code

Blog post