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The Problem

—xisting network growth models often make
assumptions that are at variance with how individuals
form links In real-world networks:

1 Individuals utilize unbounded computation and
information (e.g., node degree) to form links

2 Individuals only rely on structural features to form
iINnks and do not consider nodal attributes
3 Individuals form each link independently

We address the following problem:

raints shape the
networks”?

How do individual resource cons
global structure of attributec

Empirical Analysis

We study evolving attributed networks in which new
nodes, each with an attribute value, join the network and
form edges to existing nodes.

Global Network Properties

Common trends in six large-scale citation networks:
densification, high local clustering, heavy-tailed degree
distribution, and homoph

Indegree-Clustering Relationship
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Attributed Random Walk (ARW) Model

ARW is a resource-constrained model in which new nodes use biased random

walks to concurrently acquire local information and form edges.

1 Join network + select seed

. & Tightly knit

value, B(u).
(2) Otherwise,

—— SELECT-SEED

(1) With probability psame/psame+pair, randomly select a seed
node from existing nodes that have the same attribute

select a seed node from existing nodes that do not have
the same attribute value, B(u).

with probability pdift/psame +pqir, randomly

traversal, lin

ARW parameters jointly control random walk

K formation, and seed selection.
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Interpreting the Model

The model parameters contro
connecting to similar, proxima
subsequently shape structural
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Effect of p;;,. on Local Clustering
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mixing patterns as well as local clustering.
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2 Initiate random walk + form edges

—— RANDOM-WALK
(1) At each step of the walk, new node u visits node v;.

significant margin of 2.5-10x.

Jointly Modeling Multiple Structural Properties
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Locality-biased Edge Formation
—dge formation processes exhibit bias towards pairwise
proximate nodes that are in the same locality.
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Measuring Structural Proximity in Hep-PH dataset

BN Hep-PH dataset

Configuration null model
B Uniform null model

1 2 3 4 5) 6 7

Average Pairwise Path Length between Connections

Edge formation in Hep-PH network
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American Physical Society (APS) Dataset  Attributed Random Walk (ARW) Model

Assortativity 0.692 0.657

Average Local Clustering 0.237

Assortativity
Average Local Clustering 0.252

o If B(u) = B(v;), u links to v; with probability psame
e Otherwise, u links to v; with probability pgg
(2) Then, with probability pjump, # jumps back to seed sy,.

(3) Otherwise, with probability 1 — pjump, 4 continues to
walk. It picks an outgoing edge with prob. p,,: or an in-
coming edge with prob. 1 — p,,; to visit a neighbor of v;.

(4) Steps 1-3 are repeated until u links to m(t) nodes.

Holme-Kim (HK) Model

+ el 0, Contrasting ARW with the
AT -/‘/’.-'-‘ olme-Kim model underscores
&: . % . o .0 X | | |
ceto e ot the importance of incorporating
++lep00 multiple sociological phenomena
St in edge formation processes.

Assortativity 0.002
Average Local Clustering 0.073
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Preferential Attachment

Pref. Attachment & Triangle Closing
Random Walk

Attributed Network Models
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Future Directions

- Motif formation in attributed

ion metrics (lower is better)

- Resource-constrained models for social networks

networks

- Edge formation in the presence of multiple attributes
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